Individual culture and atmospheric oxygen during culture affect mouse preimplantation embryo metabolism and post-implantation development | Melbourne IVF
By Kelley RL, Gardner DK.
Abstract
RESEARCH QUESTION: Does single embryo culture under atmospheric or reduced oxygen alter preimplantation metabolism and post-implantation development compared with culture in groups? DESIGN: Mouse embryos were cultured under 5% or 20% oxygen, individually or in groups of 10. Spent media were analysed after 48, 72 and 96 h of culture. Blastocysts were assessed by outgrowth assay or transferred to pseudo-pregnant recipients, and fetal and placental weight, length and morphology were assessed. RESULTS: Compared with group culture, individually cultured blastocysts had lower net consumption of glucose and aspartate and higher glutamate production. Atmospheric oxygen reduced uptake of glucose and aspartate and increased production of glutamate and ornithine compared with 5% oxygen. Combining 20% oxygen and single culture resulted in further metabolic changes: decreased leucine, methionine and threonine consumption. Under 5% oxygen, individual culture decreased placental labyrinth area but had no other effects on fetal and placental development or outgrowth size compared with group culture. Under 20% oxygen, however, individual culture reduced outgrowth size and fetal and placental weight compared with group-cultured embryos. CONCLUSIONS: Preimplantation metabolism of glucose and amino acids is altered by both oxygen and individual culture, and fetal weight is reduced by individual culture under atmospheric oxygen but not 5% oxygen. This study raises concerns regarding the increasing prevalence of single embryo culture in human IVF and adds to the existing evidence regarding the detrimental effects of atmospheric oxygen during embryo culture. Furthermore, these data demonstrate the cumulative nature of stress during embryo culture and highlight the importance of optimizing each element of the culture system.